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To reduce the costs of construction, operation, maintenance, energy storage and
grid connection, some devices for extracting energy from sea waves are likely to be
installed on the coast. We study theoretically a single oscillating water column (OWC)
installed at the tip of a long and thin breakwater. The linearized problems of radiation
and scattering for a hollow cylinder with an open bottom are then solved by the usual
method of eigenfunction expansions and integral equations. Since a thin breakwater is
the limit of a wedge, an exact solution for the diffraction by a solid cylinder at the tip
of a wedge is derived to facilitate the analysis. Following Sarmento & Falcão (J. Fluid
Mech., vol. 150, 1985, pp. 467–485), power takeoff by Wells turbines is modelled by
including air compressibility in the chamber above the water surface. The effects of
air compressibility on the extraction efficiency is studied. It is shown that for this
simple geometry the angle of incidence affects the waves outside the structure but not
the extracted power.

1. Introduction
The science and technology of power extraction from sea waves have been steadily

advancing since the 1970s. Extensive reviews of existing devices can be found in Evans
(1981), McCormick (1981), Mei (1983), Falcão (2002) and Falnes (2002). While many
designs have been proposed, the most widely studied fall in two major types. In one,
energy is collected from the oscillations of floating bodies such as buoys, cams and
floats – see e.g. Salter (1974), Evans (1976), Mei (1976), Budal & Falnes (1977) and
Newman (1979). The second type, called oscillating water column (OWC), consists of
a stationary chamber open at the bottom that allows the water surface inside to push
the dry air above through one or more Wells turbines which rotate in one direction
only. For both types, optimum power absorption can in principle be achieved by
impedance matching; i.e. the system must resonate at the design frequency, and the
energy absorption rate must match the rate of radiation damping. In practice both
the resonance frequency and the radiation damping rate are fixed once the device
geometry is chosen. Because sea waves are random and broadband, a design challenge
is to strive for high efficiency over a broad range of frequencies around the spectral
peak of the incident sea. One way to achieve this is to manipulate the absorber by
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Figure 1. OWC at the head of a breakwater.

phase control (Budal & Falnes 1977). The other is to couple two or more mechanisms
in one system so that multiple resonant peaks can be attained.

Theories for simple two-dimensional OWCs have been derived by Evans (1978,
1982), Smith (1983), Sarmento & Falcão (1985) and Evans & Porter (1995) who
were the first to consider the compressibility of air inside the chamber. An isolated
axisymmetric OWC in the open sea has been considered by Evans & Porter (1997) who
modelled the system by a thin-walled circular cylinder with its open bottom elevated
above the seabed, thus allowing waves to enter the column. The same boundary-value
problem was studied earlier by Garrett (1970) for the diffraction by a bottomless
harbour. In this case, the water surface inside the column is subjected only to the
atmospheric pressure.

In general, siting of wave-energy absorbers depends not only on wave climate but
also on different costs such as those of construction, operation, maintenance, storage
and grid connection. For some projects it may be preferable to install the entire
system on the coast rather than offshore. Since 1990 an experimental OWC pilot
plant has been in operation on the coast of Pico Island of Azores, Portugal (Falcão
2000). New plans have been reported for another full-size OWC station at the head
of a breakwater at the mouth of Foz do Douro River, Portugal (Martins et al. 2005).
An OWC system of 300 MW capacity is being constructed at Mutrika city in the
Basque country of northern Spain (Heath 2007). Effects of other types of coasts have
been studied by McIver & Evans (1988) for a system of two-dimensional pistons
oscillating at the end of identical harbours along a reflecting coast. Evans (1988) has
derived formulas for the maximum power efficiency of devices near a straight coast
line. So far no theory is known for an OWC on a breakwater.

In this paper we consider an idealized model of an OWC at the tip of a thin
breakwater as sketched in figure 1. In order to examine the essential physics without
massive numerical work, the sea depth is assumed to be constant everywhere. The
more practical case of complex geometry and bathymetry can be dealt with by existing
numerical means, as in Martins-Rivas & Mei (2007). Wells turbines are assumed to
be installed on top of the cylindrical column. Special emphasis is on the effect of
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air compressibility on the bandwidth of power-capture length. As is standard in
the linearized theory, the hydrodynamic problem can be decomposed as the sum of
radiation and diffraction problems. An exact solution for the diffraction by a solid
cylinder at the tip of a wedge is described. It facilitates the analysis of the limiting
case of a thin breakwater. A rather surprising result is that for this idealized geometry,
the rate of energy extraction, which depends on the area average of the water surface
displacement inside the column, is unaffected by the presence of the breakwater and
hence is the same as for an OWC in the open sea. By virtue of an identity relating
the diffraction and radiation problems, the extraction rate can be predicted by just
solving the radiation problem alone.

2. Model of power takeoff
For the sake of convenience we first summarize the known relations between power
takeoff and the hydrodynamic parameters needed. Let one or more Wells turbines
be installed at the top of the cylinder. Due to the high sound speed in air and the
low frequency of sea waves, the air pressure pa is approximately uniform throughout
the chamber. As in Evans (1982) we let the mass flux through the Wells turbines be
proportional to the chamber air pressure. Following Sarmento & Falcão (1985), we
further account for air compressibility and relate the mass flux of air to the turbine
characteristics by

d(ρaV )

dt
= ρa

dV

dt
+ V

dρa

dt
=

KD

N
pa, (2.1)

where N is the rotational speed of turbine blades, D the outer diameter of turbine
rotor, ρa the air density and V the air chamber volume. The empirical coefficient K

depends on the design, the number and set-up of turbines; dV/dt is the linearized
rate of total upward displacement of the water surface inside the column,

dV

dt
= Q ≡

∫∫
Sc

w dS =

∫ a

0

∫ 2π

0

w(r, θ, z = 0, t) rdr dθ, (2.2)

where w denotes the vertical velocity of the water surface Sc in the chamber. Assuming
isentropy so that c2

a(dρa/dt) = dpa/dt , where ca is the sound velocity in air, we have

d(ρaV )

dt
= ρ0

aQ − Vo

c2
a

dpa

dt
(2.3)

with ρ0 being the air density. Then, for simple harmonic motion with Q =Re(Q̂e−iωt ),
pa =Re(p̂ae

−iωt ),

Q̂ =

(
KD

Nρ0
a

− iωVo

c2
aρ

0
a

)
p̂a (2.4)

as in Sarmento & Falcão (1985).
For small-amplitude waves the linearized velocity potential Φe−iωt in water can be

treated as the sum of radiation and diffraction potentials, i.e.

Φ(x, y, z) = φ(x, y, z) + ϕ(x, y, z). (2.5)

The radiation potential (φ) describes the water response to the oscillating air pressure
inside the column. The diffraction potential (ϕ) is the response to a train of plane
incident waves in the presence of the OWC/coast system. Accordingly, the upward
flux at the water surface is the sum of contributions from the radiation and diffraction
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potentials,

Q̂ = Q̂R + Q̂D. (2.6)

We express these two contributions as

Q̂R ≡ − (B − iC) p̂a and Q̂D ≡ Γ A0, (2.7)

where B and C are real and A0 is the incident wave amplitude. Physically C is in
phase with the flux acceleration and amounts to the added hydrodynamic inertia (i.e.
the radiation susceptance). On the other hand, B is in phase with the flux velocity
amounting to radiation damping (i.e. radiation conductance). The quantities B and C
and the complex response function Γ will be computed in later sections. Combining
(2.4) and (2.7), we obtain

p̂a

A0

=
Γ[(

KD

Nρ0
a

+ B
)

− i

(
C +

ωVo

c2
aρ

0
a

)] . (2.8)

The power output is the time-averaged rate of work done by the chamber pressure
pushing air through the turbine:

Pout =
d(ρaV )

dt

pa

ρ0
a

=
KD

2Nρ0
a

|p̂a|2 =
KD

2Nρ0
a

|Γ |2 A2
0(

KD

Nρ0
a

+ B
)2

+

(
C +

ωVo

c2
aρ

0
a

)2
. (2.9)

In terms of the dimensionless coefficients

Γ̃ = Γ/
(ag

ω

)
, (B̃, C̃) = (B, C)/

(
a

ωρw

)
(2.10)

and

χ =
ρwKDω

ρaNa
, β =

ω2Voρw

c2
aaρa

(2.11)

the efficiency of power extraction can be measured by the capture length L defined
by the ratio of power output to the density of power flux of the incident wavefront,

kL =
kPout

ρgA2
0Cg/2

=
gka

ωCg

χ |Γ̃ |2(
χ + B̃

)2

+
(

C̃ + β
)2

. (2.12)

While the parameter χ characterizes the turbines, β represents the effect of
compressibility of air in the chamber and is analogous to a spring constant. As
noted by Sarmento & Falcão (1985), this effect of compressibility is mathematically
equivalent to adding an imaginary part to the turbine coefficient K and amounts to a
phase difference between the mass flow rate and the pressure. As an estimate we take
ω = 0.5 rad s−1, a = 10 m, Vo = 103 m3 and ρw/ρa = 103. Then β = 0.43 which is of the
order of unity, indicating the importance of air compressibility.

To obtain the parameters B̃, C̃ and Γ̃ , it is necessary to solve the radiation and
diffraction problems. The former is the response to pressure-forced oscillaton of the
water surface inside the column. The latter is due to scattering of an incident wave
when the water surface everywhere is uniformly atmospheric. The two problems are
coupled by the power takeoff relation (2.4). Linearized approximation for small-
amplitude waves is used throughout.



Wave power extraction from an oscillating water column 399

3. Diffraction problem
Let the incident wave arrive from the direction θ = α with respect the breakwater (see
figure 1). The diffraction potential is governed by

∇2ϕ = 0, in water, (3.1)

and the boundary conditions
∂ϕ

∂z
− ω2

g
ϕ = 0, on the water surface z = 0, (3.2)

∂ϕ

∂n
= 0 on all solid boundaries. (3.3)

As is known from past theories the solution can be constructed with the help of the
vertical eigenfunctions Z0(z) and Z
(z), 
 = 1, 2, 3, . . . , defined by

Z0(z) =
cosh k(z + h)

N
1/2
0

, N0 =
1

2

[
1 +

sinh 2kh

2kh

]
, (3.4)

where k is the positive real root of the dispersion relation

ω2 = gk tanh kh (3.5)

and

Z
(z) =
cos κ
(z + h)

N
1/2



, N
 =
1

2

[
1 +

sin 2κ
h

2κ
h

]
, 
 = 1, 2, 3, . . . , (3.6)

where κ
, 
 =1, 2, 3, . . . , are the positive imaginary roots of (3.5), i.e.

−ω2 = gκ
 tan κ
h, 
 = 1, 2, 3, . . . . (3.7)

The eigenfunctions Z0(z) and Z
, 
 =1, 2, 3, . . . , satisfy (3.2) as well as the no-flux
boundary condition at the sea bottom. Together they form a complete orthogonal set
in −h < z < 0: ∫ 0

−h

Z
(z)Zm(z) dz = hδ
m, 
, m = 0, 1, 2, 3, . . . . (3.8)

For brevity we shall define k = iκ0 and include Z0(z) as a member of the complete set
of (3.6) with 
 =0.

Let us first represent the total diffraction potential outside the cylinder as the sum
of two parts:

ϕO(r, θ, z) = ϕ1 + ϕ2, (3.9)

where ϕ1 is due to scattering by a solid cylinder extending the entire sea depth and
connected to the breakwater and ϕ2 is the correction for the opening. The first part
is solved exactly in Appendix A by extending the two-dimensional solution of the
classical problem of a vertical wedge by Stoker (1958), with the following result:

ϕ1 =
−igA0

ω

∞∑
n=0

εn

cos
nα

2
e−inπ/4iY ′

n/2(ka)

H ′
n/2(ka)[

Jn/2(kr) −
J ′

n/2(ka)

Y ′
n/2(ka)

Yn/2(kr)

]
cos

(
nθ

2

)
Z0(z)

Z0(0)
, (3.10)
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where Jn/2 and Yn/2 are the standard Bessel functions of the order of n/2. The second
part ϕ2 is the response to the oscillating pressure associated with ϕ1 at the opening
r = a, 0 <θ < 2π, −h < z < − d , and is formally expressed as

ϕ2 =
−igA0

ω

∞∑

=0

Z
(z)

∞∑
n=0

An


Kn/2(κ
r)

κ
a K ′
n/2(κ
a)

cos
nθ

2
(3.11)

which satisfies the no-flux condition on both sides of the breakwater (θ =0, 2π); Kn/2

denotes the modified Bessel function of the second kind of the order of n/2. The
coefficients An
 are yet unknown. Note that the terms with 
 = 0 correspond to an
outgoing wave

Kn/2(−ikr) =
π

2
i(n/2)+1H

(1)
n/2(kr). (3.12)

The potential inside the cylinder r < a, 0 <θ < 2π is due entirely to the opening

ϕC =
−igA0

ω

∞∑
n=0

∞∑

=0

(Bn
 cos nθ + Cn
 sin nθ)
In(κ
r)

κ
a I ′
n(κ
a)

Z
(z), (3.13)

where Bn
 and Cn
 are also unknown. Note that for 
 = 0, κ0 = − ik and

In/2(−ikr) = (−i)n/2Jn/2(kr). (3.14)

Since ϕ1 already satisfies the no-flux condition on the cylindrical surface r = a for
the entire water depth, ϕ2 and ϕC must satisfy

∂ϕ2

∂r
=

∂ϕC

∂r
=

{
0, −d < z < 0,

U (z, θ), −h < z < −d,
0 < θ < 2π, (3.15)

which implies

∞∑
n=0

∞∑

=0

An
 cos
nθ

2
Z
(z) =

∞∑
n=0

∞∑

=0

(Bn
 cos nθ + Cn
 sin nθ) Z
(z)

=

⎧⎪⎨⎪⎩
0, −d < z < 0,

iaω

gA0

U (z, θ), −h < z < −d,

0 < θ < 2π. (3.16)

Using orthogonality, we get for any integer 
 and n

2π

εn

An,
 =
iaω

ghA0

∫ 2π

0

∫ −d

−h

U (θ, z)Z
(z) cos
nθ

2
dθdz, (3.17)

2π

εn

{Bn,
 ; Cn,
} =
iaω

ghA0

∫ 2π

0

∫ −d

−h

U (θ, z)Z
(z){cos(nθ) ; sin(nθ)}dθdz. (3.18)

Since the pressure must also be continuous at the opening, we require

ϕ1 + ϕ2 = ϕC, r = a, −h < z < −d (3.19)

so that
∞∑

n=0

[
En cos

nθ

2
Z0(z) +

∞∑

=0

An


Kn/2(κ
a)

κ
a K ′
n/2(κ
a)

cos
nθ

2
Z
(z)

]

=

∞∑
n=0

∞∑

=0

(Bn
 cos nθ + Cn
 sin nθ)
In(κ
a)

κ
a I ′
n(κ
a)

Z
(z), (3.20)
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where

En = εn

cos
nα

2
e−inπ/4iY ′

n/2(ka)

Z0(0)H ′
n/2(ka)

(
Jn/2(ka) −

J ′
n/2(ka)

Y ′
n/2(ka)

Yn/2(ka)

)
(3.21)

is associated with ϕ1. After using (3.17) and (3.18), an integral equation for U (θ, z) is
obtained,∫ 2π

0

∫ 0

−h

dθ ′dz′ U (z′, θ ′) K(z, θ; z′, z′, θ ′) =
−2πigA0

aω

∞∑
n=0

En cos
nθ

2
Z0(z),

0 < θ < 2π, − h < z < −d, (3.22)

with the kernel

K(z, θ; z′, θ ′

≡
∞∑

n=0

∞∑

=0

εn

h

In(κ
a)

κ
a I ′
n(κ
a)

Z
(z)Z
(z
′)[sin(nθ) sin(nθ ′) + cos(nθ) cos(nθ ′)]

−
∞∑

n=0

∞∑

=0

εn

h

Kn/2(κ
a)

κ
a K ′
n/2(κ
a)

Z
(z)Z
(z
′) cos

(
nθ

2

)
cos

(
nθ ′

2

)
. (3.23)

The integral equation is solved by an efficient method due to Evans & Porter (1997)
for a similar problem in two dimensions. Let U (θ, z) be expanded as

U (θ, z) =
−igA0

ω

∞∑
m=0

∞∑
p=0

(αmp cosmθ + βmp sin mθ)up(z) (3.24)

with

un(z) =
2(−1)n

π
√

(h − d)2 − (z + h)2
T2n

(
z + h

h − d

)
, (3.25)

where Tn is the Chebychev polynomials of the order of n. Making use of the identity
(Erdélyi, Magnus & Tricomi 1954)

Fn
 ≡
∫ −d

−h

un(z)Z
(z)dz = N
−1/2

 J2n{κ
(h − d)}, (3.26)

where N
 is the normalization coefficient defined in (3.6), the integral equation (3.22)
may be written as

∞∑
n=0

2π
h

a
En cos

nθ

2
Z0(z)

= −
∞∑

n=0

∞∑

=0

∞∑
m=0

∞∑
p=0

εnβmpFp


4m(1 − (−1)n)

4m2 − n2

Kn/2(κ
a)

κ
a K ′
n/2(κ
a)

cos
nθ

2
Z
(z)

−
∞∑

n=0

∞∑

=0

∞∑
m=0

∞∑
p=0

2παmpFp
δ(n/2)m

Kn
2
(κ
a)

κ
a K ′
n/2(κ
a)

cos
nθ

2
Z
(z)

+

∞∑
n=0

∞∑

=0

∞∑
m=0

∞∑
p=0

2πβmpFp
δnm (1 − δn0)
In(κ
a)

κ
a I ′
n(κ
a)

sin nθZ
(z)

+

∞∑
n=0

∞∑

=0

∞∑
m=0

∞∑
p=0

2παmpFp
δnm

In(κ
a)

κ
a I ′
n(κ
a)

cos nθZ
(z). (3.27)



402 H. Martins-Rivas and C. C. Mei

Multiplying (3.27) by up′(z) cos(m′θ) and up′(z) sin(m′θ) in turn, integrating over
the range 0 < θ < 2π, −h<z < − d and using (3.26), we get for any p′ and m′ two
algebraic systems for the coefficients αmp and βmp:

E2m′Fp′0
h

a
=

∞∑
m=0

∞∑
p=0

αmp

{
δmm′

∞∑

=0

[
Im′(κ
a)

κ
a I ′
m′(κ
a)

− Km′(κ
a)

κ
a K ′
m′(κ
a)

]
Fp
Fp′


}
(3.28)

and

∞∑
n=0

2π
h

a
EnFp′0

4m′(1 − (−1)n)

4m′2 − n2

=

∞∑
m=0

∞∑
p=0

βmp

{
2π2δmm′

∞∑

=0

Im′(κ
a)

κ
a I ′
m′(κ
a)

Fp
Fp′


}
−

∞∑
m=0

∞∑
p=0

× βmp

{ ∞∑
n=0

∞∑

=0

εn

Kn/2(κ
a)

κ
a K ′
n/2(κ
a)

Fp
Fp′

16mm′(1 − (−1)n)2

(4m2 − n2)(4m′2 − n2)

}
.

(3.29)

The infinite series are truncated. Let the upper limit of the m-series of sines/cosines
be M and the upper limit of vertical eigenmodes and Chebychev polynomials p be
P . We first convert the two-dimensional matrices as vectors:

{α} = {α00, α01, . . . , α0P , α10, α11, . . . , α1P , . . . . . . , αM0, αM1, . . . , αMP },
(3.30)

{β} = {β10, β11, . . . , β1P , β20, β21, . . . , β2P , . . . . . . , βM0, βM1, . . . , βMP }.
(3.31)

Thus, αmp = αk with k =m · (P + 1) + p, and the systems to be numerically solved are

(M+1)(P+1)∑
k=0

Ke
k′kαk = V e

k′

(M+1)(P+1)∑
k=P+1

Ko
k′kβk = V o

k′ ; k′ = 0, 1, . . . , (M + 1)(P + 1), (3.32)

where

Ke
k′k = δmm′

P∑

=0

[
Im′(κ
a)

κ
a I ′
m′(κ
a)

− Km′(κ
a)

κ
a K ′
m′(κ
a)

]
Fp
Fp′
,

V e
k′ = E2m′Fp′0

h

a
, V o

k′ =

M∑
n=0

2π
h

a
EnFp′0

4m′(1 − (−1)n)

4m′2 − n2
,

Ko
k′k = 2π2δmm′

P∑

=0

Im′(κ
a)

κ
a I ′
m′(κ
a)

Fp
Fp′


−
M∑

n=0

P∑

=0

εn

Kn/2(κ
a)

κ
a K ′
n/2(κ
a)

Fp
Fp′

16mm′(1 − (−1)n)2

(4m2 − n2)(4m′2 − n2)
, (3.33)
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with the convention m = �k/(P + 1)� and p = k − (P + 1) �k/(P + 1)� and similar
notations for primed indices.

After solving the truncated systems numerically, all the coefficients An
, Bn
 and Cn


can be computed from (3.17) and (3.18). Then the diffraction potential in the entire
fluid is found. In particular, we get from (3.13)

Γ =
1

A0

∫ a

0

rdr

∫ 2π

0

dθ
∂φC

∂z
|z=0 =

−2πig

ω

∫ a

0

∞∑

=0

B0


In(κ
r)

κ
a I ′
n(κ
a)

Z′

(0)rdr. (3.34)

In addition to checking with the limiting cases of a semi-infinite breakwater without
the cylinder, checking is also performed with an isolated vertical cylinder. Correctness
and accuracy of our computations have been validated by comparing our results for
head-sea incidence (α = π) with Garrett (1970) for a bottomless harbour in an open
sea. When α = π, all terms of odd n disappear in the series of (3.10) which is the
solution for the isolated cylinder in the open sea. Physically the thin breakwater is
virtually absent. We have also checked an identity which relates Γ and the radiation
damping rate B (Evans 1982) as will be discussed in the next section. In all cases, the
agreement is excellent, and the plotted results cannot be distinguished.

Sample numerical results are displayed in figure 2 for the free surface inside and
outside the cylinder at the lowest resonance frequency. The dimensions are chosen
to be typical for an OWC design with a/h= 0.5 and d/h = 0.2. Note that the free
surface inside is roughly uniform and insensitive to the angle of incidence α. However,
the free surface outside depends strongly on α. The free-surface amplitude along the
outside wall of the cylinder is also shown in figure 3 for ka ≈ 1. These results are useful
for computing wave forces on the structure. Generally, the elevation on the incidence
side along the breakwater (θ ∼ 0) is significantly larger than that on an isolated
cylinder. On the shadow side the elevation is considerably reduced as expected. To
see the effects of the opening, the results for a solid cylinder without opening are also
shown. The pressure on the exposed side is lessened, while that on the shadow side
is increased. The difference between the solid and open cylinders is very significant
for relatively long waves (ka ≈ 1 here). For shorter wave, e.g. ka ≈ 3, waves outside
do not penetrate the opening, and the difference is small.

In early computations it was noted that the vertical flux rate due to the fluctuating
water surface in the column, i.e. Γ , is independent of the angle of incidence α.
This surprising result can be proven as follows: By mass conservation, the said
vertical flux is equal to the total radial flux (the area integral of U (θ, z)) through
the submerged opening. As seen from (3.24), this radial flux depends only on the
coefficients α0p, p = 0, 1, 2, 3, . . . , which in turn depends only on E0 as can be seen
from (3.28). However by definition (3.21), E0 corresponds to the isotropic term of the
diffraction problem ϕ1 and is independent of the angle of incidence. It follows that
both the radial flux and Γ are also independent of α. It was remarked by Professor
A. Falcão that if a circular buoy heaves inside the column, this independence should
also hold as long as the buoy is axially symmetric.

Since the radiation problem is axially symmetric, coefficients B and C are
independent of the incidence angle as well. It follows from (2.9) that the power
output is the same for all incidence angles, despite the presence of the breakwater.
Since in the special case α = π, the breakwater is ineffective, power absorption
here is the same as if the OWC unit were in the open sea. Thus the existence
of the breakwater affects only the wave patterns outside and inside, hence the
wave forces on the structure, but not the averaged vertical flux inside the OWC.
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Figure 2. Free-surface elevation inside and around the cylinder for different incidence angles
at the lowest resonance frequency: a/h = 0.5; d/h = 0.2; ka =1.27; t = 0. From top left to
bottom, as α increases: (a) tail-sea incidence α = 0; (b) oblique incidence α = π/4; (c) normal
incidence α = π/2; (d ) oblique incidence α = 3π/4; (e) head-sea incidence α = π.

Of course any deviation from the simple geometry, such as finite thickness of the
breakwater and absence of axisymmetry of the submerged opening, should destroy this
independence.

4. Radiation problem
Since the air pressure is assumed to be spatially uniform, the radiation problem is
axially symmetric; the thin breakwater has no effect. The radiation problem is the
same as that studied by Evans & Porter (1997) for a circular OWC in the open sea.
We have repeated their calculations to obtain all the hydrodynamic coefficients.

For evaluating the energy extracted, the coefficients B̃ and C̃ are calculated from
(2.7) after normalization according to (2.10), as shown in figure 4 for one draft and
different radii. It is worth noting that the radiation damping and the diffraction-
induced vertical flux in the column are linked through an identity due to Evans
(1982):

B =
k

8πρgA2
0Cg

∫ 2π

0

|Q̂D(α)|2dα. (4.1)
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Figure 3. Polar plot of the free-surface elevation amplitude along the outside wall of the
cylinder, r = a, for different incidence angles, a/h = 0.5; ka =1.12. Dots: cylinder extending to
the bottom. Solid line: truncated empty cylinder with d/h = 0.2. From top left to bottom, as
α increases: (a) tail-sea incidence α = 0; (b) oblique incidence α = π/4; (c) normal incidence
α = π/2; (d ) oblique incidence α = 3π/4; (e) head-sea incidence α = π.

As was just proven Q̂D ∝ Γ is independent of α; hence the above identity reduces to

B =
k

∣∣∣Q̂D

∣∣∣2
4ρgA2

0Cg

, i.e. B̃ =
kag

∣∣∣Γ̃ ∣∣∣2
4Cgω

. (4.2)

This relation has been used as another check for the accuracy of separate
computations of radiation and diffraction potentials. For the present geometry, a
mathematical consequence of (4.2) is that if only the extracted power is required,
there is no need to solve the diffraction problem, since |Γ | can be deduced directly
from B which is the result of the simpler radiation problem. Of course this shortcut
is hard to recognize in advance of our proof.
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Figure 5. (a) Radiation damping and (b) added mass coefficients as functions of the
normalized frequency kh for d/h = 0.1, 0.2, 0.3. In all cases a/h = 0.5.

As can be seen in figure 4, for relatively small columns (a/h= 0.25, 0.5), the

damping is positive in the computed range of kh. For the larger column a/h= 1, B̃
vanishes at kh = 3.83 which corresponds to the smallest zero of J ′

0(ka) when there is

no radiation due to destructive interference, i.e. B̃ = 0 (The first three zeros of J ′
0(ka)

are at ka = 3.83, 7.02, 10.17). This zero is known to exist from the two-dimensional
theory of waves created by a finite band of uniform surface pressure (Stoker 1958)
and can be easily derived for three dimensions with a uniform pressure in a circle.

Note also that, unlike the case of a rigid floating body, the added mass C̃ changes sign
and is shaped like the letter N . For a/h= 0.25, 0.5 there is only one N; for a/h= 1
there are two, separated by the zero of J ′(ka). This characteristic is known in two-
and three-dimensional OWC systems (Smith 1983; Sarmento & Falcão 1985; Evans
& Porter 1995). Both the frequency and the amplitude of the resonance peak decrease
with increasing a/h. On the other hand, a larger radius a leads to a wider bandwidth.
Physically, as a/h becomes smaller, the fluid inside the OWC moves like a solid
piston. In the limit a hydrostatic approximation predicts resonance at kd tanh(kh) = 1
(which corresponds to kh ≈ 5). This trend is indeed consistent with the computed
results for small radii.

Figure 5 shows the effects of draft d/h for a fixed radius a/h= 0.5. Clearly smaller

d/h (i.e. larger opening) leads to lower and flatter curves of B̃ and C̃. It is interesting
to note that a larger opening gives a larger frequency bandwidth.

5. Extracted power
We wish to explore how to optimize the power takeoff characteristics and system
dimensions with special focus on the effects of air compressibility.
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functions of the normalized frequency kh for different column sizes a/h. For d/h = 0.2,
h = 10 m, a/h = 0.25, 0.5, 1.

As a preliminary, we choose a sample case in which the sea depth and power takeoff
system is similar to those of the pilot station in Pico Island, Azores, Portugal, i.e.
D = 2a, Vo = πa2h, N =2000 r.p.m., K = 0.45 (for one turbine), h = 10 m, ρw/ρa = 1000,
g = 9.8 m s−2 and ca = 340 m s−1, and study how the size of the OWC affects the power
extraction.

The normalized capture length kL defined in (2.12) is plotted in figure 6. Also
shown is the mean water-surface displacement ηav inside the column, obtained
after calculating the chamber pressure p̂a and averaged over the cross-section.
This averaged displacement is directly proportional to dV/dt = Q in (2.2) which
is responsible for energy extraction as derived in (2.9). It may also be observed by

comparing figure 6 with figure 4 that ηav and B̃ have roughly the same resonance
frequencies at kh ≈ 1.5, 2.5, 3.2, 4.1. When the cylinder radius is not large, e.g.
a/h � 0.5, both kL and ηav have only one resonance peak in the computed range
of kh, dominated by the Helmholtz mode in which the free surface in the chamber
is essentially horizontal. The peak for ηav is higher for a smaller cylinder and occurs
at a larger kh. But for the larger column with a/h= 1 there are two resonance
peaks separated by the first zero of J ′

0(ka) at ka = kh = 3.83. The capture length kL

for different column radii also has peaks around the same resonance frequencies.
Note that the maximum and the bandwidth of kL increase with the cylinder
radius.

In reference to (2.12), the maximum efficiency can be achieved by choosing the
turbine characteristics χ and the chamber size, for one frequency only. Let us first
optimize the turbines and take ∂(kL)/∂χ = 0 to get

χ(ω) =

√
B̃(ω)

2
+ (C̃(ω) + β(ω))2. (5.1)

The chamber size and the column geometry are fixed and cannot be easily adjusted.

Hence β cannot be optimized for a broad range of ω. If, for any single ω, C̃(ω) +

β(ω) = 0, then χ(ω) = B̃(ω); the maximum capture length attainable at that frequency
is

kLmax =
gka

Cgω

∣∣∣Γ̃ ∣∣∣2
4B̃

= 1. (5.2)

The second equality follows from (4.2). It is of course more desirable to strive for
high efficiency for a broadband of frequencies. In practice, it is hard to vary the
chamber volume (hence β) for different ω but likely more feasible to vary the power
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Figure 7. Results by optimizing only the turbine characteristics χ over a wide range of kh:
(a) optimal turbine parameter; (b) optimal capture width; (c) average free-surface elevation
inside the OWC; (d ) average pressure inside the OWC; h = 10 m, d/h =0.2, Vo = πa2h,
a/h =0.25, 0.5, 1.

takeoff characteristics χ . For example, one can control the turbine constant K by
using several turbines and changing the blade angle and rotation speed and the like,
for a broad range of frequencies. Let us choose the best χ according to (5.1) over a
wide interval of kh under the constraint of fixed chamber volume Vo (or β).

The optimum capture length is then

kLopt (ω) =
4B̃(ω)

√
B̃(ω)

2
+ (C̃(ω) + β(ω))2(√

B̃(ω)
2
+ (C̃(ω) + β(ω))2 + B̃(ω)

)2

+ (C̃(ω) + β(ω))2

. (5.3)

The best turbine parameter χ and the resulting kL by this control strategy are shown
in figure 7. The corresponding air pressure and ηav are also presented as functions
of kh for several column sizes: a/h= 0.25, 0.5, 1. There is clearly a qualitative
difference from figure 6. In particular the bandwidth of kL is now greater. For the
smaller columns, a/h= 0.25, 0.5, kL and ηav now have two peaks within the computed
range of kh. For the large column with a/h = 1, there are four peaks in the same
range of kh, with two on each side of the the zero of J ′

0(ka) at ka = kh = 3.83. Note
also that the air pressure p̂a in the chamber and the turbine parameter χ show only
half the number of peaks. For example, for a/h= 0.5 the peak of χ is at kh ≈ 2.6,
while the peak of p̂a is at kh ≈ 5.2. The reason is as follows: At these frequencies,

(5.1) for χ and (2.8) for p̂a can be simplified to χ = B̃ and p̂a ∝ 1/
√

B̃ by using the

fact that β = C̃. Now, B̃ is maximum around the first peak (kh ≈ 2.6) and very small
at the second (kh ≈ 5.2) as shown in figure 4. Hence χ is small, but p̂a is large at
kh ≈ 5.2.

The presence of double peaks has been noted before by Sarmento & Falcão (1985)
in their study of a two-dimensional OWC system. Recall that for maximum capture

length, β = C̃, i.e. the curves β versus kh and C̃ versus kh must intersect. If the



Wave power extraction from an oscillating water column 409

10

C
~

, β

–β

C
~

5

0
1 2 3 4

Vo Vo = 0.75 πa2h

Vo = 2 πa2h

5

0

6

0.2

0.4

0.6

0.8

1.0

7
–5

–10

–15

(a)

10

kL

C
~

, β

–β

C
~

5

0
1 2 3 4 5 6 7

–5

–10

–15
Vo = 3 πa2h

10

kL

–β

C
~

5

0
1 2 3 4 5 6 7

–5

–10

–15
Vo = 10 πa2h

10

kL

–β

C
~

5

0
1 2 3 4 5 6 7

–5

–10

–15

10

kL
kL

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

kh

0.2

0.4

0.6

0.8

1.0

kh

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

1.0 1.0

–β

C
~

5

0
1 2 3 4 5 6 7

–5

–10

–15

(b)

Vo = πa2h

10

kL

kL

kL

–β

C
~

5

0
1 2 3 4 5 6 7

–5

–10

–15

(c)

(d ) (e) ( f )
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curve of C̃ is shaped as a single N such as figure 4 for a/h = 0.25, 0.5, there can be
two points of intersection, hence two peaks of kL. In figure 8 we consider different
values of β by increasing the chamber volume Vo. If Vo = 0 or, equivalently, if air

compressibility is ignored, β =0, and there is only one intersection at C̃ = 0 resulting
in just one maximum efficiency. We note that β ∝ ω2 ∝ kh tanh(kh) so that β is
almost linear in kh for sufficiently short waves. As Vo increases, the β curve is inclined
downward, causing two intersection points, hence two maxima and wider bandwidth
in efficiency. Further increase of Vo brings the two intersecting points together. If Vo

exceeds a certain limit, there is no intersection, and the optimum efficiency, kL = 1,
cannot be achieved. For any a, d and h there is only a finite range of Vo in which kL

is optimum for two different frequencies.

For a relatively large column with a/h= 1, the C̃ curve consists of two N , as is
shown in figure 9. Hence there are four peaks of kL, and the efficiency is high for a
much greater bandwidth.

In short we can thank compressibility of air in the chamber for broadening the
bandwidth of the extraction efficiency.

Finally we display the effects of the draft d/h in figure 10; kL, ηav , the pressure and
the optimum χ are shown for different values of cylinder draft d/h = 0.1, 0.2, 0.3. It
can be seen that a smaller draft leads to a better efficiency (bandwidth and amplitude)
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for this particular choice of chamber volume. Resonance occurs at higher frequencies

if the draft is smaller. Recall that as the draft decreases, the curve of C̃(kh) becomes

flatter. Thus the two intersection points between the −β(kh) and C̃(kh) curve are
wider apart. This explains why the smaller draft corresponds to a broader efficiency
bandwidth. In practice the draft must be deep enough so that air cannot penetrate
the chamber for large-amplitude waves.

6. Concluding remarks
A major advantage of a circular wave power device in the open sea is the independence
of absorption efficiency on the incidence angle. A possible disadvantage is the higher
cost of construction, maintenance, energy transmission, storage and the like. We have
shown that omnidirectionality can still be achieved by the less expensive installation
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at the tip of a very thin breakwater. In practice, this theoretical advantage will
of course be reduced,since the thickness of the breakwater is likely comparable to
the size of the OWC. As a consequence the opening will be less than 2π, making
the averaged response inside the column more sensitive to the incidence angle. A
theory accounting for realistic geometry can in principle be carried out by numerical
means as in Martins-Rivas & Mei (2007). We have further explored the benefit of
air compressibility in broadening the frequency bandwidth of absorption efficiency.
Unlike systems in which energy is extracted from the motion of rigid bodies, this
benefit is inherent and unique in the pneumatic power takeoff. Finally the exact
solution given in Appendix A can be used to study land-based OWC on other types
of coasts such as a straight coast and a cape. Further challenges in the design of
controllable turbine systems remain.

We acknowledge the financial support by a grant from the Sustainable Energy
Program of MIT–Portugal Alliance Project. Partial funding has also been received
from US-Israel Bi-National Science Foundation. Discussions with Professors Antonio
Falcão and Antonio Sarmento of the Technical University of Lisbon, Portugal, have
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Appendix. Exact theory of diffraction by a solid circular cylinder at the tip of a
wedge
Among the analytical techniques for the exact solution of the classical problem of
two-dimensional diffraction by a semi-infinite screen (or a wedge), the method by
Stoker (1958) can be easily extended to the diffraction by a circular column centred
at the tip of a wedge and standing on the seabed. The theory to be derived can
be applied to, or modified for, two-dimensional acoustic, elastic or electromagnetic
waves.

Let a solid cylinder of radius a be centred at the tip of the wedge defined by
r > a, 0 <θ <νπ. An incident plane wave approaches from angle α with respect to
the x-axis (θ = 0). Since h is constant, the three-dimensional velocity potential can be
written as

ϕ1(r, θ, z) = − igA0

ω
η(r, θ)

Z0(z)

Z0(0)
. (A 1)

The normalized free-surface displacement η satisfies the Helmholtz equation in the
(x, y) or (r, θ) plane. Following Stoker, we expand η in Fourier series

η(r, θ) =
1

νπ
η̄0(r) +

2

νπ

∞∑
n=1

η̄n(r) cos
nθ

ν
, r > a, 0 < θ < νπ, (A 2)

where η̄n is the Fourier expansion coefficient of η:

η̄n(r, ν) =

∫ νπ

0

η(r, θ) cos
nθ

ν
dθ, n = 0, 1, 2, 3, . . . . (A 3)

On the wedge surfaces θ = 0, νπ the normal derivative

1

r

∂η

∂θ
= − 2

νπr

∞∑
n=1

n

ν
η̄n(r) sin

nθ

ν
(A 4)

vanishes for all r > a.
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From Helmholtz equation governing η(r, θ), the Fourier coefficient η̄n must satisfy
Bessel’s equation of the order of n/ν, subject to the no-flux boundary condition on
the cylinder wall. The solution must be of the form,

η̄n = an

(
Jn/ν(kr) −

J ′
n/ν(ka)

Y ′
n/ν(ka)

Yn/ν(kr)

)
, (A 5)

where an remains unknown. Since the total potential is the sum of incident ηI and
scattered ηS potentials, the finite Fourier transform of the scattered wave is

η̄S
n = η̄n − η̄I

n = η̄n −
∫ νπ

0

ηI cos
nθ

ν
dθ. (A 6)

Since ηS must satisfy the radiation condition, we require

√
r

(
dη̄S

n

dr
− ikη̄S

n

)
→ 0, kr � 1. (A 7)

It is easily shown from (A 5) that

√
r

(
dη̄n

dr
− ikη̄n

)
∼ an

√
2k

π
e

−i

(
kr − nπ

2ν

) [
e−iπ/4 − eiπ/4

J ′
n/ν(ka)

Y ′
n/ν(ka)

]
, kr � 1. (A 8)

For a plane incident wave from angle α with respect to the x -axis, ηI =eikr cos(θ−α), the
method of stationary phase yields

√
r

(
d

dr
− ik

)
η̄I

n =
√

r

(
d

dr
− ik

) ∫ νπ

0

eikr cos(θ−α) cos
nθ

ν
dθ

∼ 2
√

2πk cos
nα

ν
e−i(kr+π/4) (A 9)

(see Stoker 1958, p. 122). To satisfy (A 7) we equate the two asymptotic approximations
above and get

an

√
2k

π
e−i(kr−(nπ/2ν))

[
e−iπ/4 − eiπ/4

J ′
n/ν(ka)

Y ′
n/ν(ka)

]
= 2

√
2πk cos

nα

ν
e−i(kr+π/4), (A 10)

yielding

an =
2π cos

nα

ν
e−inπ/2νY ′

n/ν(ka)

Y ′
n/ν(ka) − eiπ/2J ′

n/ν(ka)
=

2πi cos
nα

ν
e−inπ/2νY ′

n/ν(ka)

H ′
n/ν(ka)

, (A 11)

where Hn/ν ≡ H
(1)
n/ν . In particular if n= 0

a0 =
2πiY ′

0(ka)

H ′
0(ka)

. (A 12)

In summary the exact solution is

η =

∞∑
n=0

εn

νπ

2πi cos
nα

ν
e−inπ/2νY ′

n/ν(ka)

H ′
n/ν(ka)

(
Jn/ν(kr) −

J ′
n/ν(ka)

Y ′
n/ν(ka)

Yn/ν(kr)

)
cos

nθ

ν
, (A 13)

where ε0 = 1 ; εn = 2, n =1, 2, 3, . . . , are the Jacobi symbols.



Wave power extraction from an oscillating water column 413

The limiting case ν = 2 gives the diffraction potential for a circular cylinder at the
tip of a thin breakwater,

η =

∞∑
n=0

εn

cos
nα

2
e−inπ/4iY ′

n/2(ka)

H ′
n/2(ka)

(
Jn/2(kr) −

J ′
n/2(ka)

Y ′
n/2(ka)

Yn/2(kr)

)
cos

nθ

2
,

(A 14)

which can be rewritten as

η =

∞∑
n=0

εn cos
nα

2
e−inπ/4Jn/2(kr) cos

nθ

2

+

∞∑
n=0

εn cos
nα

2
e−inπ/4

[(
iY ′

n/2(ka)

H ′
n/2(ka)

− 1

)
Jn/2(kr) − i

J ′
n/2(ka)

H ′
n/2(ka)

Yn/2(kr)

]
cos

nθ

2
.

(A 15)

The first series is the effect of the semi-infinite breakwater; the second is the additional
effect of the cylinder. In the limit of ka → 0, the second series disappears. The special
case of ν = 1 corresponds to a half-cylinder on a straight coast. This result can
be reduced to one found more easily by the method of images. The solution for a
cylinder connected to a wedge of any other angle can also be found from the general
result here.
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